The Non-Archimedean Theory of Discrete Systems
نویسندگان
چکیده
منابع مشابه
The Non-Archimedean Theory of Discrete Systems
In the paper, we study behaviour of discrete dynamical systems (automata) w.r.t. transitivity; that is, speaking loosely, we consider how diverse may be behaviour of the system w.r.t. variety of word transformations performed by the system: We call a system completely transitive if, given arbitrary pair a, b of finite words that have equal lengths, the system A, while evolution during (discrete...
متن کاملUltra Discrete Limit in Soliton Theory and Non-Archimedean Valuation
In this article, I have studied the ultra discrete limit, which is currently studied in soliton theory, from point of view of valuation theory. A quantity obtained after taking the ultra discrete limit should be regarded as non-archimedean valuation, which is related to the p-adic valuation in number theory. The ultra discrete difference-difference equations, whose domain and range are given by...
متن کاملNon-archimedean Nevanlinna Theory in Several Variables and the Non-archimedean Nevanlinna Inverse Problem
Cartan’s method is used to prove a several variable, non-Archimedean, Nevanlinna Second Main Theorem for hyperplanes in projective space. The corresponding defect relation is derived, but unlike in the complex case, we show that there can only be finitely many non-zero non-Archimedean defects. We then address the non-Archimedean Nevanlinna inverse problem, by showing that given a set of defects...
متن کاملNon-Archimedean Ergodic Theory and Pseudorandom Generators
The paper develops techniques in order to construct computer programs, pseudorandom number generators (PRNG), that produce uniformly distributed sequences. The paper exploits an approach that treats standard processor instructions (arithmetic and bitwise logical ones) as continuous functions on the space of 2-adic integers. Within this approach, a PRNG is considered as a dynamical system and is...
متن کاملDirect Images in Non-archimedean Arakelov Theory
In this paper we develop a formalism of direct images for metrized vector bundles in the context of the non-archimedean Arakelov theory introduced in our joint work [BGS] with S. Bloch, and we prove a Riemann-Roch-Grothendieck theorem for this direct image. The new ingredient in the construction of the direct image is a non archimedean " analytic torsion current ". Let K be the fraction field o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics in Computer Science
سال: 2012
ISSN: 1661-8270,1661-8289
DOI: 10.1007/s11786-012-0132-7